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as a function of M for five different values of N are presented 

in Fig. 3. 

For comparison, the fraction of the total energy emitted 

by S, and directly incident upon Sz, without reflection, is 

shown in Fig. 4. 
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NOMENCLATURE 

specific heat ; 
enthalpy; 
latent heat of vaporization; 

thermal conductivity: 

permeability; 

length of porous section; 
mass flow rate per unit area = pu; 

pressure; 
P&cl&t number = mC,LJk = RePrLld; 
heat flux per unit area; 

interface position: 

temperature; 
distance coordinate. 

Greek symbols 

A, conduction-convection difference; 

0% dimensionless temperature: 

P> viscosity; 

v, kinematic viscosity = p/p; 

P, convection-conduction ratio. 

Dimensionless quantities 

C, = C,JC,,; 
F, s tiJrn,; 
H, 3 h,,(T*)/[h,(T*) - hJTx)I; 

R, = v.Iv,.; 
6, = Lfl/kr<,,(T* - 7,): 

K. 
i. 

= kL,,,lk,,,, ; 
= d&/d5 
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Subscripts 

eff, effective property; 
con, conduction; 
r, initial value (before interface advances into 

medium); 
4 value at x = 0; 

;: 
reservoir (x = L); 
fluid (liquid or vapor); 

L, liquid; 

K vapor. 

Superscripts 
* saturation conditions; 

dimensionless quantity. 

INTRODUCTION 

THE PROBLEM investigated here was first discussed in [l]. 
Liquid from a constant temperature reservoir flows into one 
end of a porous medium. At the opposite end, a constant 
temperature is imposed. For high enough values of the 
surface temperature, an evaporation front, separating a 
vapor region from a liquid region, propagates into the 
medium. 

It is shown in [l] that for the constant temperature 
boundary condition one steady-state interface position can 
exist. However, for a prescribed constant heat flux at the 
boundary either one or three steady-state interface positions, 
depending on the physical parameters of the problem, can 
exist. Since the relation between surface temperature and 
interface position is single-valued [1], we are lead to the 
possibility that for a given heat flux, to which more than one 
interface position can be attributed, one may find more than 
one surface temperature. In other words, we expect that the 
relation between surface temperature and surface heat 
conduction is multivalued. Consequently, the governing 
equations of [ 1) are further investigated here and it is shown 
that indeed such a multivalued relation exists. 

GOVERNING EQUATIONS 

The model and physical assumptions of [l] are fully 
retained as well as the nomenclature and the method of 
normalization. For a detailed description the reader is 
referred to [l]. For brevity we refer freely to the steady-state 
formulation of [1] and repeat here the basic normalized 
equations: 

d%, 
;i;r+ 

KPc,P(S) de, _ o 
C dx ’ 

O<xdS (1) 

S<x<l. (2) 

The corresponding boundary conditions are 

atx=0:0,=0 

atx= 1:0,=0 

(3) 

(4) 

at x = S 
(5) 

zz H&F(S). (6) 

Equations (l)-(5) yield the normalized temperature distri- 
butions: 

e,(x) = 1 - exp [ - KPeiF(S)x/Cl 
1 - exp [ - K&F(S)S/C] ’ 

%(4 = 

exp [Pe,(l - x)F(S)] - 1 

exp [Pe,(l - S)F(S)] - 1’ 

O<x$S (7) 

S<x<l. (8) 

The position of the interface, S, is given by the substitution 
of (7x8) into (6): 

~={exp[~]_ 1) 

1 

’ H + 1 - exp [ - Pe,(l - S)F(S)] 

where 

F(S) = ’ 
RS + 1 - S’ 

}> (9) 

(10) 

and the initial PeclCt number, Pei, is based on the flow rate 
when the interface is at x = 0: Pe, = thiCpLL/kL.,,, and 
firr = K(P, - PJLV”. 

CONDUCTION HEAT FLUX AT x = 0 

From the definition of 8a 5 (T, - T*)/(T* - Ta) and 
8, = (T, - T,,)/(T, - T*) we form the one dimensional heat 
flux : 

hence, the normalized conduction at the surface can be 
written as: 

do = 
k,J: - TR)” = ” (%),=; 

(11) 

Since 

rcPeiF(S)/C 

x=o = 1 - exp [ - Pe,F(S)S/C] ’ 

&cPe,F(S)/C 

” = 1 - exp [ - acPe,F(S)S/C]’ (12) 
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Limit of Pe, + 0 

From [t] we have 

s _ &l/K. 

1 + 0,/K 
(13) 

as Pei + 0. Substituting (13) into (12) and making use of(l1) 

we obtain: 

forx = 0 #S 

for .x = 0 = S. 

(14) 

(15) 

From the limit of Pe, --t CD, we retain [ 11 the expression 

In this limit 

tiPe 
F(S) - __-.-_A 

C(R - 1) In { 1 +[O,/C(H + l)]j t riPrr’ 

which after substitution in (12) and rearranging yields 

& - T [O, + C(I! + I,], Pe, -+ cc. (17) 

SURFACE HEAT FLUX 

To determine the energy convected out with the vapor at 

x = 0, use is made of [1]: 

and using the approximation h,(T,) 2 C&T, then 

4W&,,T, 
fi”h”(Tn) = - cL 

= FbWwLT,, 
CL 

(18) 

Forming now the ratio, p, of convection flux to conduction 

flux at the surface, (12) and (18) yield 

p = {l - exp[-KP:F(S)s]}[l + @sirT_ TsJ. (19) 

Assuming now that the heat input by conduction (for the case 

of an imposed surface temperature) is larger than the energy 

convected out with the vapor, the difference becomes 

Defining 

(20) 

we obtain 

0 
L_ ~_ - 

1 - exp [ - fcPqF(S)S/C] 

Limit of Pc, -+ 0. 

Using (I 3) we obtain: 

(22) 

00 8 - - 
S 

If the P&let number is to be interpreted as providing a 

measure of the relative magnitude of heat transfer by con- 

vection to heat transfer by conduction, we indeed expect 

p -+ 0. Equation (23) can be written, with (13) as S - (O,, t k), 

Pe, -+ 0, which is consistent with (14) since in this limit 

conduction dominates. 

As the P&let number increases convection becomes mot c 

and more dominant and for Pe, + cc the position of the 

interface moves to the origin minimizing the effect of con- 

duction. This deduction is consistent with (16). In this limit, 

of Pei + ic and S -+ 0, the interface function F(S) + 1 and 

thus the exponent in the expression for p yields 

Finally, 

p - 0, + C(I? + 1) 1 1 PC, -t c. (24) 
1 

- 

C(E + 1) - ;T*x--T,K Pr, + I. (25) 

ZERO NET FLUX 

Consider the case in which the heat conducted into the 

porous medium equals the energy flux carried out by con- 

vection. Setting (21) to equal zero. 

; = exp[-Ky(s)s], (26) 

Consistent with the condition that for finite values of Pr,. 

S = 0 when T* = To. To retain the condition of zero net 

heat flux at the surface, x = 0. for the case S = I, (26) yields 

To = T* exp (KP~,/RC‘). (27) 

One may compute now the heat flux due to conduction for 

the special case of the evaporation front being located at 
the origin x = S = 0. This is done by considering l?,, = 0,(S) 
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b IG. 1. Normalized interface position, S, normalized surface conduction, &,, conduction- 
convection difference, 6, and convection-conduction ratio, p, as a function of the normal- 

ized surface temperature BO. Pe, = 2.2 x IO- 3. 

Normalized surface temperabe, Ina, 

FIG. 2. Normalized interface position, S, normalized surface conduction, ijo, conduction- 
convection difference, 4, and convection-conduction ratio. p, as a function of the normal- 

ized surface temperature 8,. Pe, = 41. 
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FIG. 3. Normalized interface position, 5, normalized surface conduction, go, 
conduction-convection difference, 6, and convection<onduction ratio. p as a 

function of the normalized surface temperature B,,. PeL = 41. 

from (9) and substituting it in the expression for ijo as given 

by (12): 

{ 

1 
lim Q0 = KPei II + 1 

1 
> .X = s = 0. (**) 

In the limit of Pq -+ 0 and Pei -+ m this result is consistent 

with (15) and (17) respectively, and with the idea of minimum 

heat flux, q*, as given in [I]. 

NUMERICAL COMPUTATIONS AND RESULTS 

Equations (9), (lo), (12) (19) and (21) are solved numerically 

for the same physical parameters as in [1] : R = 45, If = 7.1, 

C = 1.96, K = 2.24, TR = 25”C, T* = 100°C. The plotted 

results indicate clearly the multivalued effect. In the limit of a 

vanishingly small Peck% number, Fig. 1, the curves for go 

and for 6 coincide. This is due to the fact that Q,, + 0,/S 

and 6 --t Be/S for Pq --t 0. As the PecICt number increases, 

the curves become different. 

For all finite values of Pq two differently imposed surface 

temperatures, 8,, giving rise to two distinctly different 

interface positions, yield the same conduction flux at the 

surface. 
For a given P&let number the increasing surface tempera- 

ture, and hence the continuous penetration of the interface 
position, are associated with a strong decrease in the con- 

duction flux, followed by an immediate increase. This 

response in the steady-state formulation may give rise to 

some non-physical situations as a result of instabilities that 

are suggested clearly in Fig. 2. Consider moving along the 

In & curve in the direction of decreasing values of 0,. 

Down to a certain value of &, the relation with Be is single 

valued.BeIowthisvaluethesamevalueofrj,canbemaintained 

with two or even three different surface temperatures. This is 

due to the fact that in Fig. 2 Q,, has a maximum that occurs 

at a surface temperature, BO, slightly larger than unity. The 

scale of Fig. 2 does not allow proper presentation and indi- 

cates only the possibility of two surface temperatures for the 

same do. In Fig. 3 the scale of S, &,, 6, and p are expanded to 

show the behaviour near the local maximum and the 

possibility of three surface temperatures corresponding to 

the same conduction flux is indicated. 

The curves for &, show also a minimum. This minimum 

occurs at a surface temperature associated with a value of 

S # 0. In all cases the minimum value of do is lower than the 

minimum heat conduction, q*, required for surface evapora- 

tion (28). This difficulty may be resolved by a careful stability 

analysis. 
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